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Abstract. We present a detailed theoretical treatment to describe the lineshape of molecular resonances
in a cold dense gas of rubidium Rydberg atoms. Molecular potentials in Hund’s case (c) are calculated by
diagonalization of an interaction matrix. We show how the strong �-mixing due to long-range Rydberg-
Rydberg interactions can lead to resonances in excitation spectra. Such resonances were first reported in
[S.M. Farooqi et al., Phys. Rev. Lett. 91, 183002 (2003)], where single UV photon excitations from the 5s
ground state occurred at energies corresponding to normally forbidden transitions or very far detuned from
the atomic energies. Here, we focus our attention on resonances at energies corresponding to excited atom
pairs (n− 1)p3/2 + (n + 1)p3/2. Very good agreement between the theoretical and experimental lineshapes
is found.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states – 32.80.Pj Optical cooling
of atoms; trapping – 34.20.Cj Interatomic potentials and forces

1 Introduction

In recent years, experiments involving ultracold Rydberg
gases and plasmas [1–5] have studied novel systems that
are translationally cold, but with significant internal en-
ergy. The fact that highly-excited Rydberg atoms have ex-
aggerated properties [6] is one motivation for this recent
interest [7,8]. For example, in systems with one Rydberg
excitation, the existence of long-range molecular bound
states with very complex wave functions — the so-called
“trilobite” states — have been predicted [9–13]. In addi-
tion, there have also been proposals [14] to form bound
molecular states with two highly-excited atoms. Although
such “macrodimers” have not yet been detected, molec-
ular resonances caused by Rydberg-Rydberg interactions
have been observed [15]. The effect of interactions between
Rydberg atoms can also lead to density-dependent line
broadening of resonances [16–18], and the modification
of collisional processes [19]. The unique combination of
properties has led to proposals to use ultracold Rydberg
atoms for fast quantum gates [20,21]. Some of those
schemes exploit a “dipole blockade”, i.e. a strong suppres-
sion of Rydberg excitation in a confined gas, to realize
elements for quantum computation between atoms [20] or
in mesoscopic ensembles [21]. Recently, large inhibitions
of Rydberg excitation have been observed [17,18], and a
similar effect, labeled the “van der Waals blockade” has
been reported [17].

a e-mail: rcote@phys.uconn.edu

In this paper, we present a detailed theoretical treat-
ment to describe the lineshape of some of the molecu-
lar resonances reported in [15]. In Section 2.1, the long-
range interaction potentials between Rydberg atoms are
briefly described. In Sections 2.2 and 2.3, we construct
a more detailed model, and show how �-mixing between
such long-range molecular potentials correlated to differ-
ent asymptotes can give the necessary mixing of p char-
acter to allow excitation into otherwise far-off-resonance
or forbidden states. The excitation lineshape is also calcu-
lated. In Section 3, we illustrate experimental evidence of
such molecular resonances in an ultracold rubidium gas.
The experiment uses single UV photon excitations from
the 5s ground state to npRydberg states (n = 50–90). The
spectra display resonances red-detuned from the atomic
resonance, at energies corresponding to excited atom pairs
(n − 1)d + ns, as well as (n − 1)p + (n + 1)p. Our theo-
retical lineshape is compared to the experimental result
for excitations corresponding to asymptotes correlated to
(n − 1)p3/2 + (n + 1)p3/2. We particularly focus on the
69p3/2 + 71p3/2 resonance, which has been studied in de-
tail.

2 Theory

We start by considering the excitation of a pair of atoms,
initially in the ground state, to the np + np asymptote,
i.e. both atoms excited into the same Rydberg state np



4 The European Physical Journal D

4 6 8 10 12

Separation R (X 10
4
 a.u.)

-6

-4

-2

0

2

E
ne

rg
y 

of
fs

et
 fr

om
 7

0p
+

70
p 

(G
H

z)

=

=

=

=

70p+70p

nl+n’l’

5s+70p

5s+5s

2∆

∆

(a) (b)

Separation R

E
ne

rg
y

70p+70p (W)

70s+71s

70p+70p (S)

69d+70s

69p+71p

Fig. 1. (a) Two-photon excitation scheme, with detunings
from the atomic resonance (∆) and from the 70p+70p asymp-
tote (2∆), and a “curve crossing” between the states correlated
to the 70p+70p and n�+n′�′ asymptotes. (b) Potential curves
in Hund’s case (b) in the vicinity of the 70p + 70p asymptote
for the 1Σ+

g and 3Σ+
u states.

(see the excitation scheme in Fig. 1a). We then show that
well-defined resonances occur due to �-mixing between
np+ np molecular potential curves and other molecular
curves sharing the same symmetries.

As will be seen below, it is remarkable that the effect
of the �-mixing takes place almost entirely at the energy
corresponding to the (n− 1)p3/2 + (n+1)p3/2 asymptote,
eventhough several asymptotes are involved.

To model this process, we find the molecular potential
curves for a pair of atoms, and calculate the two-photon
excitation probability. In Section 2.1, we discuss poten-
tial curves in Hund’s case (b), where we ignore spin and
�-mixing between potential curves. In Section 2.2, both the
spin and �-mixing of various molecular states are included,
and after diagonalization of the interaction matrix, the
potential curves in Hund’s case (c) are found; these last
curves are used to calculate the excitation probability. Fi-
nally, to compare with experimental data, we obtain line-
shapes and signal sizes in Section 3. Note that while one-
photon transitions are far off resonance in the vicinity of
molecular resonances, two-photon transitions are (nearly)
resonant for most pairs; this suggests that the dominant
contribution to the excitation probability comes from pair
excitation. In fact, experimental results [15] show clearly
that the positions of these resonances nearly coincide with
the energies of a pair of isolated rubidium atoms.

2.1 Interaction potentials: Hund’s case (b)

At large internuclear separations R, the interaction be-
tween two atoms can be expanded as a sum of powers of
1/R [22]. For two atoms in the same np state, and neglect-
ing fine structure effects, it takes the following form [14,23]

Vpp(R) = −C5

R5
− C6

R6
− C8

R8
− · · · (1)

where the C’s are the dispersion coefficients. In [14], we
computed the C5, C6, and C8 coefficients as functions of
the principal quantum number n (for Rb–Rb interactions),
and found that they scale as n8, n11, and n15, respectively
(see also [24] for additional details). The exact values of
these coefficients depend on the molecular symmetry: for
the np+ np asymptote, a total of 12 molecular states ex-
ist, grouped in 6 pairs, each pair having the same dis-
persion coefficients. In Figure 1b, we illustrate two poten-
tial curves for the asymptote 70p+ 70p corresponding to
1Σ+

g and 3Σ+
u pairs of states. Notice that one pair, labeled

70p+ 70p(S), has a particularly strong attractive interac-
tion dominated by a large C6 van der Waals coefficient
(for n = 70, C6 � 2.64 × 1022 a.u.) [14]. The other pair,
labeled 70p + 70p(W), corresponds to a weaker repulsive
interaction.

These potential curves may intersect potential curves
correlated to nearby asymptotes, leading to avoided cross-
ing and/or mixing between states with the same symme-
try. In general, the np+np potential curves can couple to
curves correlated to n1s + n2s, n1s + n2d, or n1d + n2d
through dipole interactions, and to n1p + n2p through
quadrupole interactions. Although higher order multipoles
could couple other states, the strength of such couplings
decreases rapidly and hence we consider only crossings be-
tween the above states.

At large R, the leading terms of the curves for
n1s+ n2s, which are denoted as Vss′ , are

Vss′ (R) = −C6

R6
− C8

R8
, (2)

while those for n1s + n2d or n1p + n2p, labeled Vsd and
Vpp′ respectively, have the same form, namely

Vsd/pp′(R) = −C5

R5
− C6

R6
− C8

R8
. (3)

Finally, the leading terms for n1d+ n2d, labeled Vdd′ , are

Vdd′(R) = −C5

R5
− C6

R6
− C7

R7
. (4)

Naturally, the Cn coefficients are different for the vari-
ous asymptotes, and depend on the particular molecular
symmetries considered (see [24] for details).

Although several asymptotes corresponding to various
combinations of n1 and n2 may lie near the np+np asymp-
tote, such as (n−1)d+ns or (n−2)d+(n+1)s etc., only
those with small ∆n = |n−n1| or |n−n2| have significant
couplings to Vpp. Hence, only a few asymptotes with n1

and n2 near n need to be considered. In Figure 1b, we show
the most important potential curves near the 70p + 70p
asymptote, namely the 69d+70s, 69p+71p, and 70s+71s
asymptotes.

For some applications, the details of interactions are
not crucial, and one can safely ignore effects such as
fine structure coupling, �-mixing, etc. For example, in the
study of inhibition of Rydberg excitations due to long-
range interactions [17], the interaction between atoms in
np3/2 states was described by the C6-coefficient, assum-
ing that all np states had the energy of the np3/2 fine
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structure component. This approximation greatly simpli-
fied the description of the excitation dynamics. In addi-
tion, the internuclear separations R between atoms were
significantly greater in [17] than those considered here,
so that curve crossing/mixing was not an issue. To de-
scribe strong �-coupling relevant for the molecular reso-
nances, a much more accurate description of interactions
is needed. We have to diagonalize the interaction matrix
to find molecular potentials and to see how states with
different � are coupled together.

2.2 Potentials and symmetries: Hund’s case (c)

The potentials in the previous section are obtained in
the second order of perturbation theory [14,24], and thus
share its limitations. In addition, the effect of spin and
�-mixing were ignored. To describe the resonances ob-
served in a cold dense gas of rubidium Rydberg atoms,
we cannot use them directly, since the interaction en-
ergies of pairs of Rydberg atoms contributing to these
resonances are many times greater than the energies for
which perturbation theory is applicable. Also, formally,
the C-dispersion coefficients are well defined only if fine
structure is ignored, which is appropriate only if the en-
ergy separation between adjacent n�+n′�′ asymptotic lev-
els is much greater then the relevant fine structure split-
ting. This is not true for Rydberg states of rubidium. For
example, the asymptotic (R → ∞) spacing between the
70s1/2 + 71s1/2 and 70p3/2 + 70p3/2 levels is 213 MHz,
and the fine structure splitting of the 70p1/2 + 70p1/2 and
70p3/2 +70p3/2 diatomic levels is 569 MHz. Depending on
the energy separation, states belonging to different fine
structure levels of 70pj + 70pj′ are coupled differently to
the |70s1/271s1/2〉 states. It turns out that the coupling
between |npjnpj′〉 and |ns1/2(n + 1)s1/2〉 states is very
important for the strongly attractive np + np potentials
discussed in the previous section. The C6 coefficient is
almost two orders of magnitude stronger than those of
other potentials. This happens because the np states lie al-
most exactly halfway between the adjacent ns and (n+1)s
states, and because of the large dipole moments between
ns and np, as well as (n + 1)s and np states. In our dis-
cussion we focus on such strong potentials because they
will mix with other potential curves as soon as they get
close, resulting in avoided crossings and strong �-mixing
(especially the mixing of p-character which allows states
with otherwise forbidden transitions to be coupled to the
5s ground state). Finally, an additional reason to include
fine structure in our theoretical treatment is that the ex-
periment [15] has shown that the resonances are related
to certain fine structure components.

We include long-range Rydberg-Rydberg interactions
VRyd(R) and the atomic spin-orbit interaction Hfs (which
gives rise to atomic fine structure). We then diagonalize
the interaction matrix,

U(R) = VRyd(R) +Hfs. (5)

The eigenproblem of the interaction matrix is greatly sim-
plified by molecular symmetry, which gives some good

quantum numbers and a prescription for constructing
a symmetry-adapted basis. For homonuclear diatomic
molecules, the quantum numbers corresponding to the
D∞h point group are associated with rotations about the
internuclear axis, reflections through a plane containing
the rotation axis, and the inversion i of the spatial coordi-
nates about the center point between both atom cores [25].
The projection of the total angular momentum onto the
molecular axis is conserved because of the rotation sym-
metry. States invariant under the inversion operator i are
labeled gerade (g), and those changing sign ungerade (u).
Finally, the reflection operator σν is used explicitly only
for states with the projection of the total angular momen-
tum equal to zero [25].

The symmetry-adapted basis for the Rydberg-Rydberg
interaction VRyd(R) is |2S+1Λg/u〉. Because VRyd(R) is
essentially the residual Coulomb interaction, it is spin-
independent, and cannot mix states with different Λ,
S, or eigenvalues of i and σν ; it is diagonal in the ba-
sis |2S+1Λg/u〉|S,MS〉. However, the spin-orbit interaction
Hfs depends on spin and it mixes states with different
Λ; it is diagonal in the basis of properly symmetrized
|j1,m1〉|j2,m2〉 states. We choose to represent U(R) in
the latter basis since it is more appropriate to describe
molecular asymptotes (at R → ∞), and it facilitates the
calculation of lineshapes (see next section). Note that only
a few molecular states with similar quantum numbers n1

and n2 need to be considered, because coupling is sig-
nificant only for a few asymptotes nearby (see discussion
below).

The projection of the total angular momentum onto
the molecular axis Ω = m1 + m2 is conserved. Assuming
that there is no overlap of the electronic wave functions be-
longing to different atoms [26], the properly symmetrized
asymptotic states for Ω �= 0 have the form

|n�j,mj ;n′�′j′ ,Ω −mj ; Ωg/u〉 ∼[
|n, �, j,mj〉|n′, �′, j′,Ω −mj〉

− p(−1)(�+�′)|n′, �′, j′,Ω −mj〉|n, �, j,mj〉
]
. (6)

In this expression, the molecule-fixed reference frame
is assumed. If Ω = 0, we distinguish between
symmetric and antisymmetric states under σν via
|0±g/u〉 = (1 ± σν)/

√
2|0g/m〉; the action of the σν opera-

tor is consistent with the following rules

σν |Λ〉 = (−1)Λ |−Λ〉 , (7)

σν |S,MS〉 = (−1)S−MS |S,−MS〉 . (8)

The resonances we want to describe require strong
�-mixing; the strong mixing of p character corresponds
to crossings with the strongly attractive np + np poten-
tials. As mentioned previously, these strong np + np po-
tentials are those coupled with ns+ (n+ 1)s states. Since
Rydberg-Rydberg interactions do not mix states with
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Table 1. Asymptotic 0−
u molecular states. All of the 0−

u states used to calculate the lineshape of the 69p + 71p resonance are
listed. The Ω = 0 states have to be additionally symmetrized with respect to σν . Both mj and m2 = Ω−mj change sign under
σν , but the phase factors resulting from the symmetrization (1 ± σν)/

√
2 are not obvious. The result of this symmetrization is

presented explicitly. We assume that all |n�j , mj ; n
′�′j′ , mj′ ; 0u〉 states are symmetrized according to (6).

0−
u state Symmetrization (1 − σν)/

√
2 |0u〉

|70s71s, 0−
u 〉

{
|70s 1

2
, 1

2
; 71s 1

2
,− 1

2
; 0u〉 + |70s 1

2
,− 1

2
; 71s 1

2
, 1

2
; 0u〉

}
/
√

2

|70p 3
2
70p 3

2
, 0−

u 〉 |70p 3
2
, 3

2
; 70p 3

2
,− 3

2
; 0u〉

degenerate |70p 3
2
, 1

2
; 70p 3

2
,− 1

2
; 0u〉

|70p 3
2
70p 1

2
, 0−

u 〉
{
|70p 3

2
,− 1

2
; 70p 1

2
, 1

2
; 0u〉 − |70p 3

2
, 1

2
; 70p 1

2
,− 1

2
; 0u〉

}
/
√

2

|70p 1
2
70p 1

2
, 0−

u 〉 |70p 1
2
, 1

2
; 70p 1

2
,− 1

2
; 0u〉

|69p 3
2
71p 3

2
, 0−

u 〉
{
|69p 3

2
, 3

2
; 71p 3

2
,− 3

2
; 0u〉 + |69p 3

2
,− 3

2
; 71p 3

2
, 3

2
; 0u〉

}
/
√

2

degenerate
{
|69p 3

2
, 1

2
; 71p 3

2
,− 1

2
; 0u〉 + |69p 3

2
,− 1

2
; 71p 3

2
, 1

2
; 0u〉

}
/
√

2

|69p 3
2
71p 1

2
, 0−

u 〉
{
|69p 3

2
, 1

2
; 71p 1

2
,− 1

2
; 0u〉 − |69p 3

2
,− 1

2
; 71p 1

2
, 1

2
; 0u〉

}
/
√

2

|69p 1
2
71p 3

2
, 0−

u 〉
{
|69p 1

2
, 1

2
; 71p 3

2
,− 1

2
; 0u〉 − |69p 1

2
,− 1

2
; 71p 3

2
, 1

2
; 0u〉

}
/
√

2

|69p 1
2
71p 1

2
, 0−

u 〉
{
|69p 1

2
, 1

2
; 71p 1

2
,− 1

2
; 0u〉 + |69p 1

2
,− 1

2
; 71p 1

2
, 1

2
; 0u〉

}
/
√

2

|69s72s, 0−
u 〉

{
|69s 1

2
, 1

2
; 72s 1

2
,− 1

2
; 0u〉 + |69s 1

2
,− 1

2
; 72s 1

2
, 1

2
; 0u〉

}
/
√

2

different Λ, S, and eigenvalues of i and σν , only config-
urations of the same symmetry (described by the same
quantum numbers) can be coupled. By examining all pos-
sible symmetry configurations [23,24], we find that the
only candidates are the asymptotically degenerate 1Σ+

g

and 3Σ+
u states. After adding spin, there are three pos-

sible symmetries, 0+
g , 0−u and 1u, and only these states

lead to strongly attractive potentials. Although molecular
symmetries give a necessary condition for strong mixing,
one has to diagonalize (5) for each symmetry individu-
ally to find which states of these molecular configurations
actually give strong mixing.

The Rydberg-Rydberg interaction is conveniently ex-
pressed in the limit of large nuclear separations as an ex-
pansion in inverse powers of R. Here we consider only the
first term, i.e., dipole-dipole interactions,

VRyd(R) � Vdip(R),

= −4πr1r2
3R3

1∑
m=−1

B1+m
2 Y m

1 (r̂1)Y −m
1 (r̂2), (9)

where Bm
n ≡ m!/(n−m)! is the binomial coefficient, and �ri

is the position of the electron i around its center. The goal
is to calculate detailed lineshapes of (n− 1)p+ (n+ 1)p
resonances, particularly for 69p + 71p. These resonances
are relatively close to the atomic np resonance, which
means that they occur at small interaction energies
and thus large internuclear separations R; in this range
of R, the most important interactions are the dipole-
dipole terms. Importantly, np states cannot be coupled
directly via dipole-dipole interaction, and so significant
�-mixing is required. The matrix elements of Vdip(R) be-
tween states |1, 2〉 ≡ |n1, �1, j1,m1〉|n2, �2, j2, Ω−m1〉, and
|3, 4〉 ≡ |n3, �3, j3,m3〉|n4, �4, j4, Ω −m3〉 can be evaluated

using the following formula:

〈1, 2|Vdip|3, 4〉 =

(−1)j1+j2+j3+j4−Ω
√
L1L2L3L4J1J2J3J4

×R13R24

(
�1 1 �3
0 0 0

)(
�2 1 �4
0 0 0

){
j1 1 j3
�3

1
2 �1

}{
j2 1 j4
�4 1/2 �2

}

×
1∑

m=−1

(
1 +m

2

)(
j1 1 j3

−m1 m m3

)(
j2 1 j4

−Ω +m1 −m Ω −m3

)
.

(10)

Here, Li = 2�i + 1, Ji = 2ji + 1, and R13 and R24 are the
radial parts of the dipole matrix elements of states 1, 3
and 2, 4 respectively.

To diagonalize U(R), we select all states correlated
with the np+ np and (n − 1)p+ (n+ 1)p asymptotes, as
well as all states correlated to the asymptotes in between.
Nearby states having significant dipole-dipole couplings
with these aforementioned states are also included. In the
basis (6), dipole-dipole interactions give off-diagonal el-
ements and asymptotic separations between states give
diagonal terms. In the R-range considered for the (n −
1)p+ (n+ 1)p resonances, the coupling due to dipole ma-
trix elements Rnn′ decays rapidly with ∆n ≡ |n− n′|; for
∆n = 2, it is roughly 100 times weaker than for ∆n = 0,
and since the interaction matrix elements 〈1, 2|Vdip|3, 4, 〉
are quadratic in Rnn′ , we neglected states corresponding
to ∆n ≥ 3. Specifically, we have included all states corre-
lated to the following asymptotes: ns+ (n+ 1)s, np+ np,
(n− 1)p+(n+1)p and (n− 1)s+(n+2)s. In Table 1, we
list all asymptotic states of 0−u symmetry used in our cal-
culation of the 69p+ 71p resonance. The excitation prob-
abilities are dominated by the contributions from these
states.
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Fig. 2. (a) Potential curves for the 0−
u symmetry correspond-

ing to asymptotes from 70s1/2 +71s1/2 to 69s1/2 +72s1/2 cen-
tered around 69p3/2 + 71p3/2. This latter curve is indicated by
a thicker line. The zero of energy is set at the 70p3/2 + 70p3/2

asymptote. Only curves that are not flat (within our approxi-
mations) are shown; at separation R < 45000 a.u., they become
less reliable. (b) The fraction of 70p character |α|2 for p3/2p3/2,
p3/2p1/2, and p1/2p1/2 mixtures corresponding to the potential
correlated to the 69p3/2 + 71p3/2 asymptote.

In Figures 2–4, we show the potential curves for the
three relevant symmetries for the resonance located near
the 69p3/2 + 71p3/2 asymptote.

2.3 Pair excitation

Here, we develop the basic theory describing the reso-
nances observed in [15]. Although we focus our attention
on resonances observed at energies corresponding to ex-
cited atom pairs (n− 1)p+ (n+ 1)p, the treatment given
below could also be applied to the resonances correspond-
ing the (n − 1)d + ns asymptotes also observed in [15].
However, because these resonances occur further below
the np + np asymptote, and therefore involve smaller R,
many more states must be included. This case will be an-
alyzed in a future publication.

As mentioned previously, none of these asymptotes can
be excited directly by single-photon transitions from the
ground 5s state, and since only two atomic energies are
relevant for these resonances, the problem is treated essen-
tially as a two-body effect, i.e. excitation of an interacting
pair of atoms. We assume here that the sample is initially
in an equal mixture of the two |5s, j = 1/2,mj = ±1/2〉
states, and consequently, a pair of atoms can be in any of
four diatomic ground states with equal statistical prob-
ability. This means that the excitation probabilities of
pairs in different initial states have to be statistically av-
eraged. Averaging does not depend on the basis of initial
states used. However, the time evolution of symmetric and

4 5 6 7 8 9 10
Separation R (X 10

4
 a.u.)

0

0.02

0.04

0.06

0.08

0.1

70
p 

ch
ar

ac
te

r 
|α

|2

p3/2p3/2

p3/2p1/2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
ne

rg
y 

(M
H

z)

70s1/2+71s1/2

70p3/2+70p3/2

70p3/2+70p1/2

69p3/2+71p3/2

69p3/2+71p1/2

69p1/2+71p3/2

69s1/2+71s1/2

0g

+
(a)

(b)

Fig. 3. Same as Figure 2 for the 0+
g symmetry. In (b), |α|2 for
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antisymmetric states are independent so that choosing
the basis of symmetric and antisymmetric initial diatomic
states can simplify the evaluation of the excitation am-
plitudes. There are three symmetric initial states and one
antisymmetric state. For simplicity, our notation for the
|5s, j = 1/2,mj〉 ground states is |gm〉, where m is ±1/2.
Assuming that the polarization of the optical field is along
the z-axis, we have two intermediate states, depending on
which fine-structure component of an np state is excited.
The selection rule∆m = 0 for this laser polarization deter-
mines the polarization of the intermediate states. We label
excited Rydberg states as |e,m〉 and |e′,m〉, where e and e′
correspond to np3/2 and np1/2 respectively. Here, only the
calculation for the m1 = m2 = ±1/2 case is explained in
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detail. The final results are given for the m1 = −m2 cases,
which are evaluated in a similar fashion.

We introduce a simplified notation for diatomic states.
We define |gg〉 ≡ |g,m〉|g,m〉, where m = ±1/2, and sim-
ilar definitions are used for |ee〉 and |e′e′〉. States |ge〉,
|ge′〉 and |ee′〉 are defined as symmetric superpositions;
e.g., |ge〉 = {|g,m〉|e,m〉 + |e,m〉|g,m〉}/√2. The doubly-
excited atom pair states |ee〉, |ee′〉, and |e′e′〉 are conve-
nient for writing the equations for the excitation ampli-
tudes.

In our calculation, the actual doubly-excited states,
labeled as |ϕλ(R)〉, correspond to the molecular potential
curves ελ(R); they are eigenvectors and eigenvalues of (5),
respectively. Many potential curves λ contribute, to vari-
ous degrees, to the population of excited pairs of atoms.
For example, for the curves shown in Figures 2–4, which
correlate to asymptotes ranging from 70s 1

2
+ 71s 1

2
down

to 69s 1
2

+ 72s 1
2
, we included a total of 25 contributions,

with λ = 1 to 9 for the 0−u symmetry, λ = 10 to 16 for the
0+

g symmetry, and λ = 17 to 25 for the 1u symmetry. We
evaluate the sum of all these contributions to find the ex-
pected signal for a given detuning from the atomic np res-
onance. Large populations of excited pairs of atoms occur
when the two-photon energy is nearly resonant with one of
the asymptotic levels, ελ(R → ∞), and when |ϕλ(R)〉 has
a significant np-component due to �-mixing. In addition,
as in standard lineshape theory (e.g., using a quasi-static
treatment), a feature is expected when the first deriva-
tive of ελ(R) vanishes. These effects may lead to the ap-
pearance of a molecular resonance in spectra. Because the
number of atom pairs with a given value of R scales as R2

in a uniform sample, larger features are expected when
these effects are satisfied at larger R.

To solve for the excitation probability, we solve
the coupled time-dependent Schrödinger equation. The
Hamiltonian of an interacting pair of atoms is (in the ro-
tating frame and in the rotating-wave approximation)

H =
2∑

i=1

[
∆σi

ee +∆′σi
e′e′

]
+

2∑
i=1

[
ω

2
σi

eg +
ω′

2
σi

e′g + h.c.
]

+ [∆λ + ελ(R)] |ϕλ〉〈ϕλ| , (11)

where ω, ω′, and ∆, ∆′ are single-photon Rabi frequen-
cies and detunings relative to the np3/2 and np1/2 fine
structure components, respectively. Here ∆λ is defined as
the two-photon detuning from the asymptotic level de-
termined by ελ(R → ∞). The operators σi

eg and σi
ee are

given by

σi
eg =

∑
m

|ei,m〉〈gi,m|, (12)

σi
ee =

∑
m

|ei,m〉〈ei,m|. (13)

Our wave function is the superposition

|ψ〉 = c0 |gg〉 + c1 |ge〉 + +c′1 |ge′〉 + c2 |ϕλ〉 . (14)

Solving the Schrödinger equation

i
∂ψ

∂t
= Hψ, (15)

we obtain four equations for the excitation ampli-
tudes c(t),

i
dc0
dt

=
ω∗
√

2
c1 +

ω′∗
√

2
c′1, (16)

i
dc1
dt

= ∆c1 +
ω√
2
c0 +

ω∗
√

2
〈ee|ϕλ〉c2

+
ω′∗

2
〈ee′|ϕλ〉c2, (17)

i
dc′1
dt

= ∆′c′1 +
ω′
√

2
c0 +

ω′∗
√

2
〈e′e′|ϕλ〉c2

+
ω∗

2
〈ee′|ϕλ〉c2, (18)

i
dc2
dt

= (∆λ + ελ(R))c2 +
ω√
2
〈ϕλ|ee〉c1 +

ω′
√

2
〈ϕλ|e′e′〉c′1

+
ω′

2
〈ϕλ|ee′〉c1 +

ω

2
〈ϕλ|ee′〉c′1. (19)

For the 69p+ 71p resonance, the one-photon detunings ∆
and ∆′ are large, about 2π× 480 MHz and 2π× 195 MHz
from resonance, respectively, while the Rabi frequencies ω
and ω′ are about 250 MHz and 110 MHz, respectively (us-
ing the experimental parameters, see next section). Over
the range of the experimental scan,∆/2π = 400–900 MHz,
and we have ∆ � ω and ∆′ � ω′. We can adiabatically
eliminate c1 and c′1 using equations (17) and (18), to ob-
tain

c1 ≈ − ω√
2∆

c0 −
[
ω∗

√
2∆

〈ee|ϕλ〉 +
ω′∗

2∆
〈ee′|ϕλ〉

]
c2,

c′1 ≈ − ω′
√

2∆′ c0 −
[
ω′∗

√
2∆′ 〈e

′e′|ϕλ〉 +
ω∗

2∆′ 〈ee′|ϕλ〉
]
c2.

Substituting these two expressions in the formulae (16)
and (19) for c0 and c2, we formally obtain the Bloch equa-
tions of a two-level system

i
dc0
dt

= −ω
∗
eff

2
c2 (20)

i
dc2
dt

= [∆λ + ελ(R)] c2 − ωeff

2
c0. (21)

The effective two-photon Rabi frequency is

ωeff =
ω2

∆
aee(λ) +

ω ω′
√

2 ∆ ∆′
∆+∆′

aee′ (λ) +
ω′2

∆′ ae′e′(λ), (22)

where aee(λ) = 〈ee|ϕλ〉, aee′ (λ) = 〈ee′|ϕλ〉 and
ae′e′(λ) = 〈e′e′|ϕλ〉. We here assumed that all of the aij

coefficients are real. In equations (20) and (21), we ne-
glect all AC-Stark shifts and terms proportional to a2.
The a-coefficients measure the different p-characters in
|ϕλ(R)〉. If the molecular state has no p-character at all,
then ωeff = 0 and the transition to |ϕλ(R)〉 is forbid-
den. We note that the eigenstates |ϕλ(R)〉 are defined in
the molecule-fixed reference frame while all other states
used in the calculation are defined in the space-fixed
frame (since their definitions are related to the optical
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field polarization). This means that all of the projec-
tions contained in these coefficients depend on the orien-
tation of the internuclear axis, thus the excitation prob-
abilities have to be averaged over all possible spatial
orientations of the internuclear axis. If we write aee(λ) =∑

i〈ee|np 3
2
np 3

2
; i〉〈np 3

2
np 3

2
; i|ϕλ〉 ≡ ∑

i bee,i(λ)αee,i(λ),
where |np 3

2
np 3

2
; i〉 is the ith asymptotic molecular state

in the molecule-fixed frame corresponding to the appro-
priate symmetry, then all the angular dependence due to
the two different frames is included in the bee,i(λ) coeffi-
cient, while the αee,i(λ) coefficient describes the np 3

2
np 3

2

character contained in the state |ϕλ〉. Similar expressions
can be written for aee′ and ae′e′ , with projections onto the
|np 3

2
np 1

2
; i〉 and |np 1

2
np 1

2
; i〉 states, respectively. In Fig-

ures 2–4, we show the |α|2 for the three symmetries, cor-
responding to the 70p characters in the potential curve
correlated to the 69p3/2 + 71p3/2 asymptote.

We can eliminate ω′ using the relation ω/ω′ =√
f3/2/f1/2, where f3/2 and f1/2 are the oscillator

strengths of the p3/2 and p1/2 fine structure compo-
nents, respectively. The ratio f3/2/f1/2 for high Rydberg
states of rubidium atoms is not statistical and is approxi-
mately 5–10 [27]. We then find that ωeff(t) = β1(λ)ω2(t),
where β1(λ) is time-independent,

β1(λ) =

(
aee(λ)
∆

+

√
f1/2

2f3/2

∆+∆′

∆∆′ aee′(λ)

+
f1/2/f3/2

∆′ ae′e′(λ)
)
. (23)

If we perform the phase transformation c2 ≡ exp[−i(∆λ +
ελ(R))t]c̄2, our Bloch equations take the simpler form

i
dc0
dt

= −ω
∗
eff

2
e−i(∆λ+ελ(R))tc̄2, (24)

i
dc̄2
dt

= −ωeff

2
ei(∆λ+ελ(R))tc0. (25)

The processes considered are far from (atomic) resonance.
This means that c0 ≈ 1. Using this approximation and
ωeff(t) = β1(λ)ω2(t), we get our final formula for c̄2,

c̄2(t → ∞) = − i β1(λ)
2

∫ −∞

∞
ω2(t′)ei(∆λ+εm(R))t′dt′

= −i β1(λ)
√
π/2F(∆ϕ+ελ(R))[ω2(t′)], (26)

where Fν [h(t)] is the Fourier transform of h(t) with respect
to ν. Although the Fourier transform of ω2(t) is not equal
to the Fourier transform of the optical field, they are re-
lated. The probability P1(λ) to excite the doubly-excited
state |ϕλ(R)〉 is

P1(λ) = Abs
[
c̄22(t → ∞)

]
,

=
β2

1(λ)π
2

Abs
[
F 2

(∆λ+ελ(R))(ω
2(t))

]
. (27)

The previous analysis assumed that m1 = m2 for a pair
of atoms in the ground state. We now consider the situ-
ation where m1 = −m2. In this case, we can construct

symmetric and antisymmetric combinations

|g̃g〉 =
1√
2
{|g,m〉 |g,−m〉 + q |g,−m〉 |g,m〉} , (28)

|ẽe〉 =
1√
2
{|e,m〉 |e,−m〉 + q |e,−m〉 |e,m〉} , (29)

|ẽe′〉 =
1√
2
{|e,m〉 |e′,−m〉 + q |e′,−m〉 |e,m〉} , (30)

|ẽ′e〉 =
1√
2
{|e′,m〉 |e,−m〉+ q |e,−m〉 |e′,m〉} , (31)

where q = 1(−1) for symmetric(antisymmetric) states.
The a-coefficients in this case are defined as follows
ãee(λ) = 〈ẽe|ϕλ〉, ãee′(λ) = 〈ẽe′|ϕλ〉, ãe′e(λ) = 〈ẽ′e|ϕλ〉,
and ãe′e′(λ) = 〈ẽ′e′|ϕλ〉. We obtain an expression very
similar to the previous one for the excitation probability
of doubly-excited states, |ϕλ(R)〉

P2(λ) =
β2

2(λ)π
2

Abs
[
F 2

(∆λ+ελ(R))(ω
2(t))

]
, (32)

where β2 is given by

β2(λ) =
(
ãee(λ)
∆

+
f1/2/f3/2

∆′ ãe′e′(λ)

+

√
f1/2

f3/2

∆+∆′

2∆∆′ [ãee′(λ) + ãe′e(λ)]

)
. (33)

To calculate the lineshape in the vicinity of a molecular
resonance, P1 and P2 are averaged over initial diatomic
states and all possible orientations of the internuclear axis,
which gives 〈β2〉. Finally, we sum the pair excitation prob-
abilities of different doubly-excited states |ϕλ(R)〉 to get
the average excitation probability of a pair of atoms at
internuclear separation R. The excitation probability per
atom is the sum of all excitation probabilities of pairs that
include a given atom,

Pexc =
∑

λ

2π2

∫ ∞

0

dRR2ρ 〈β2(λ)〉

× Abs
[
F 2

(∆λ+ελ(R))(ω
2(t))

]
, (34)

where ρ is the sample density. Figures 2–4 illustrate the
relevant α-coefficients for the signal corresponding to the
69p+71p resonance. Although the relative phase between
them is important, their square is plotted. Note that all
averaging over angles is included in 〈β2〉.

For a Gaussian pulse of duration τ (FWHM) and band-
width Γ (FWHM), the Fourier transform of ω2 is given
by (with ελ(R) and ∆λ in angular frequencies)

Abs
[
F 2

(∆λ+ελ(R))(ω
2(t))

]
= 2−[∆λ+ελ(R)]2/2π2Γ 2 I2

I2
sat

π ln2 2
τ3Γ

.

(35)
This formula shows the expected quadratic dependence on
the laser intensity I. We do not assume in equation (35)
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Fig. 5. Convolutions for the three symmetries and the total
lineshape, in the vicinity of the 69p3/2 +71p3/2 asymptote, us-
ing I/Isat = 0.354 and a density of 6 × 1010 cm−3. The total
lineshape includes twice the contribution of 1u since that state
is twice degenerate (as opposed to 0+

g and 0−
u ). The horizontal-

axis is the single-photon detuning from the 70p3/2 atomic res-
onance.

that Γ is equal to the Fourier transform limit, but the
saturation intensity Isat for isolated np3/2 atoms is defined
using this ideal pulse.

Figure 5 shows Pexc in the vicinity of the
69p3/2 + 71p3/2 energy. The contributions of the three
symmetries and the resulting lineshape are plotted in
terms of the single-photon detuning from the 70p3/2

atomic resonance.

3 Experiment and discussion

The experimental approach is similar to photoassociative
spectroscopy in ultracold samples [28,29], where two col-
liding atoms interact with laser light resonant with a tran-
sition from the initial continuum ground state to an ex-
cited bound state of the molecule. This technique has been
used extensively to investigate the long-range molecular
potentials associated with low-lying excited atomic states.
The experiment described here differs in two respects from
most photoassociative spectroscopy: the principal quan-
tum numbers are much higher, and the molecular reso-
nance is a two-photon excitation, in which both of the in-
teracting atoms are excited simultaneously (see previous
section).

3.1 Experimental set-up

In the experiment, an ultracold sample of 85Rb atoms
is provided by a vapor-cell magneto-optical trap (MOT)
with a typical peak density of 1011 cm−3 at a temperature
of ∼100 µK (see [15] for details). Intense pulsed UV laser
light excites atoms in the 5s (F = 3) level to np Rydberg
states. The laser delivers pulses with energies up to 1 mJ
focused to a diameter 50–100 µm in the MOT cloud, yield-
ing a cylindrical excitation volume about ∼1 mm long.
These UV pulses of ∼5 ns duration are nearly transform

limited (∼120 MHz bandwidth). During that timescale,
the ultracold atoms are essentially static, moving less than
1 nm, so that their motion can be neglected.

Subsequently (∼300 ns after the UV pulses), Rydberg
atoms are detected via pulsed field ionization; a short
(∼80 ns) high voltage pulse provides a field of ∼1000 V/cm
that ionizes any Rydberg states above n ∼ 28. The
resulting atomic ions are detected by a microchannel
plate (MCP). A pair of wire meshes surrounds the cold
sample, allowing both the extraction of ions produced by
pulsed field ionization and the careful nulling of stray
fields [15]. Our detected signal includes atomic ions re-
sulting from any process leading to ionization, including
both bound and unbound molecular resonances, since ac-
celeration on an attractive molecular potential can lead to
short-range ionization.

Lineshapes are measured by scanning the laser fre-
quency in the vicinity of resonances to atomic np states.
By varying the detuning ∆ from the atomic level np, fea-
tures are observed at positions where no atomic excitation
should be allowed. In the following section, we examine a
resonance near the average energy of the (n − 1)p and
(n + 1)p atomic states. This feature lies just below the
np transition energy, although transitions to (n− 1)p and
(n+ 1)p are off-resonance by ∼21 GHz for n = 70.

3.2 Results and comparison with theoretical lineshapes

In Figure 6, we show a laser scan in the vicinity of the 70p
atomic resonance. A significant broadening of the main
np atomic resonances, predominantly to the red, is consis-
tent with strong attractive Rydberg-Rydberg interactions.
Both the 70p3/2 and 70p1/2 lines are visible, separated by
the 285 MHz fine structure splitting, and despite possi-
ble saturation, their relative sizes illustrate the expected
non-statistical f3/2/f1/2 for high Rydberg states of rubid-
ium atoms. On this scan, a molecular resonance is seen
as a small peak in the ion signal about 480 MHz to the
red of the 70p3/2 line, its position being near the average
energy of Rydberg atoms in the 69p3/2 and 71p3/2 states.
Other apparent features, with linewidths less than that of
the laser, do not reproduce from scan to scan and are at-
tributed to experimental fluctuations. In [15], we showed
that the signal size varies quadratically with the laser in-
tensity, as predicted for a molecular resonance. Similar
scans were obtained for other values of n over the range
50–70 [15].

In Figure 6, we also compare the experimental and
theoretical lineshapes for the 69p3/2 + 71p3/2 resonance.
The theoretical curve was computed using the experimen-
tal parameters: for 5s→ 70p3/2, the saturation irradiance
Isat (defined by ωτ =

√
2π ln 2) is about 1.5×107 W/cm2,

the irradiance is I/Isat ∼ 0.354, the pulse duration is
5 ns, and the bandwidth Γ (FWHM) is 120 MHz. The
peak MOT density used was 6 × 1010 cm−3. The theo-
retical curve shown in Figure 6 has been scaled to match
the experimental data, and a global background (corre-
sponding to ∼20% of the peak of the resonance) has been
added to it. Finally, it was shifted by 35 MHz to the blue
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Fig. 6. (a) Experimental Rydberg spectrum near the molecu-
lar resonance red-detuned from the 70p atomic resonance. Both
70p1/2 and 70p3/2 fine structure components are shown. The
resonance position roughly coincides with the average energy
of the 69p3/2 + 71p3/2 asymptote. (b) Comparison of the ex-
perimental (solid line) and theoretical (dashed line). The the-
oretical spectrum has been shifted by 35 MHz (roughly one
standard deviation) to the blue and the theoretical lineshape
assumes a 120 MHz laser bandwidth.

(within the experimental uncertainty). We find good over-
all agreement, although there are obvious differences in
the details. In both cases, we observe a slight red-detuned
wing in the molecular resonance. The lineshape for the
broad red wing of the main atomic resonance is also well
modeled by the theoretical lineshape, implying that our
theoretical values of the potential curves describe the in-
teraction reasonably well. Regarding the absolute signal
size, uncertainties in the experimental parameters, such as
ion detector response, laser intensity, and atomic density,
prevent a precise comparison with theory. Possible detec-
tor saturation and blockading of atomic excitation [17,18]
are further complications. Nevertheless, the calculated and
measured signals are in reasonable agreement, although
the calculated signal of ∼300 ions per shot (using the ex-
perimental parameters) is smaller by a factor 5–10. Note
that the position of the theoretical signal is located only
5–6 MHz to the red of the average energy of the atom pair
69p3/2 + 71p3/2.

It is remarkable that the effect of the �-mixing
takes place almost entirely at the energy correspond-
ing to the (n − 1)p3/2 + (n + 1)p3/2 asymptote, even-
though several asymptotes are involved. It is in part
due to the non-statistical f3/2/f1/2 ratio. In addition,
from Figures 2–4, we find that the |α|2 70p-characters

peak around R0 ∼ 62 000a0 (a0: bohr radius), with
∆R ∼ 15 000a0 (chosen as the FWHM of |α|2). The |α|2
70p-character for the other potential curves also exhibits
maxima in the same range, but are much smaller, hence
their weaker contribution to the total lineshape.

4 Conclusion

We have presented a theoretical treatment predict-
ing molecular resonances due to avoided crossing and
�-mixings between long-range potential curves of pairs of
excited Rydberg atoms. Expressions are given for the line-
shape of these resonances, as well as the scaling of the
signal as a function of n. The calculated lineshape for the
69p3/2 + 71p3/2 resonance compares well with experimen-
tal observations.

Many other such avoided crossings and �-mixings
should give spectral features, and their detection will help
in describing the long-range interaction between Rydberg
atoms, and possibly lead to the detection of molecular
bound levels with ultra-long equilibrium separations, the
so-called “macrodimers” [14].

The authors thank T. Gallagher for pointing out the impor-
tance of the long-range dipole-dipole interactions. This work
was supported in part by the the National Science Foundation.
The work of R.C. was partially supported by the Department
of Energy, Office of Basic Energy Sciences.
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